On the module structure in a cyclic extension over a -adic number field

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the ring of p-integers of a cyclic p-extension over a number field

Let p be a prime number. A finite Galois extension N/F of a number field F with group G has a normal p-integral basis (p-NIB for short) when O′ N is free of rank one over the group ring O′ F [G]. Here, O′ F = OF [1/p] is the ring of p-integers of F . Let m = p be a power of p and N/F a cyclic extension of degree m. When ζm ∈ F×, we give a necessary and sufficient condition for N/F to have a p-N...

متن کامل

the effects of changing roughness on the flow structure in the bends

flow in natural river bends is a complex and turbulent phenomenon which affects the scour and sedimentations and causes an irregular bed topography on the bed. for the reason, the flow hydralics and the parameters which affect the flow to be studied and understand. in this study the effect of bed and wall roughness using the software fluent discussed in a sharp 90-degree flume bend with 40.3cm ...

Cyclic amenability of Lau product and module extension Banach algebras

Recently, some results have been obtained on the (approximate) cyclic amenability of Lau product of two Banach algebras. In this paper, by characterizing of cyclic derivations on Lau product and module extension Banach algebras, we present general necessary and sufficient conditions for those to be (approximate) cyclic amenable. This not only provides new results on (approximate) cyclic amenabi...

متن کامل

On a recursive equation over a p-adic field

In the paper we completely describe the set of all solutions of a recursive equation, arising from the Bethe lattice models over p-adic numbers. Mathematics Subject Classification: 46S10, 12J12.

متن کامل

On a Quotient of the Unramified Iwasawa Module over an Abelian Number Field, Ii

Let p be an odd prime number, k an imaginary abelian field containing a primitive p-th root of unity, and k∞/k the cyclotomic Zp-extension. Denote by L/k∞ the maximal unramified pro–p abelian extension, and by L′ the maximal intermediate field of L/k∞ in which all prime divisors of k∞ over p split completely. Let N/k∞ (resp. N ′/k∞) be the pro–p abelian extension generated by all p-power roots ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nagoya Mathematical Journal

سال: 1979

ISSN: 0027-7630,2152-6842

DOI: 10.1017/s0027763000018328